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Drag reduction strategies for the turbulent flow around a D-shaped body are examined
experimentally and theoretically. A reduced-order vortex model describes the inter-
action between the shear layer and wake dynamics and guides a path to an efficient
feedback control design. The derived feedback controller desynchronizes shear-layer
and wake dynamics, thus postponing vortex formation. This actuation is tested in a
wind tunnel. The Reynolds number based on the height of the body ranges from 23 000
to 70000. We achieve a 40% increase in base pressure associated with a 15% drag
reduction employing zero-net-mass-flux actuation. Our controller outperforms other
approaches based on open-loop forcing and extremum-seeking feedback strategies in
terms of drag reduction, adaptivity, and the required actuation energy.

1. Introduction

We experimentally study the effect of open- and closed-loop flow control on the
coherent structures in the wake of an elongated D-shaped body. A key enabler for
robustness and efficient control design is an understanding of the mechanism of active
flow control by analysis of a reduced-order vortex model. This knowledge is utilized
to design an efficient control strategy for the reduction of pressure-induced drag. Our
focus is on feedback control for wake stabilization leading to drag reduction.

The flow around ground and airborne transport vehicles is determined by
aerodynamic design, manifesting a trade-off between fluid-dynamical and practical
requirements, such as usability, safety, reliability and cost (Hucho 2002). The discipline
of aerodynamic design has become mature, owing particularly to potential theory.
Small control devices can subsequently be added to improve performance and widen
the dynamical envelope by the manipulation of boundary and shear-layer physics
(Leder 1992). Control devices range from passive, active open-loop to active closed-
loop actuation. This paper is focused on the latter. These flow control approaches
have been explored in the community for decades.
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Various passive means for bluff body flow control are well-investigated and have
been applied in numerous experiments. For example, Bearman (1965) described the
stabilizing effect of a splitter plate on the wake flow. Tanner (1972) examined the
drag reduction for various kinds of a spanwise modulation of the trailing edge, such
as segmented, curved, and M-shaped trailing edges. A significant drag reduction on
a blunt-based model was achieved by modifying vortex shedding using wavy trailing
edges or vortex disruptors (Tombazis & Bearman 1997; Park et al. 2006).

Passive devices, such as vortex generators, may have an adverse effect, away from
the specific operating conditions for which they were designed. Active flow control can
reproduce effects of passive devices. In addition, it can widen the operating envelope
with beneficial impact by adapting to changing flow conditions. Literature surveys on
open-loop flow control are provided by Fiedler & Fernholz (1990) or Gad-el-Hak,
Pollard, & Bonnet (1998). For instance, a beneficial effect of active base bleed for drag
reduction was observed by Bearman (1967) and Grosche & Meier (2001). An active
control application with spanwise distributed forcing at the trailing edges of a two-
dimensional bluff body was described by Kim et al. (2004). Here, a significant drag
reduction and a suppression of vortex shedding in the wake was achieved by open-loop
forcing, both in experiment and LES. Another approach is active surface actuation.
This strategy was applied to airfoils (Wu, Xie & Wu 2003) in order to increase the
aerodynamic performance and for drag reduction of a circular cylinder (Wu, Wang
& Wu 2007). The first active open-loop flow control demonstration for a full-scale
aeroplane was achieved by Wygnanski (2004) with an XV-15 tilt-rotor aircraft.

Closed-loop flow control offers further degrees of freedom to improve actuation
efficiency. It requires mathematical or conceptual models that link actuation effects
and sensor information (figure 1). Model and controller have to be selected with
respect to the behaviour of the flow.

(a) Model-independent controllers based on gradient methods can be implemented,
when this actuator—sensor relationship is characterized by a steady-state map with an
extremum.

(b) Transfer functions describe linear input—output relations of actuation signals
and sensor readings. They allow for control design based on black-box models.

(c) Coherent structure models enable a nonlinear description of the system
dynamics, as made evident in vortex pairing, amplitude saturation, etc. The
implementation of optimal control based on such reduced-order models in experiment
is a challenge due to the enormous computational load. Physically motivated
controllers may require less numerical effort and are enabled by the understanding of
the key processes.

Current application of closed-loop flow control mainly concentrates on few well
established benchmark problems, such as the control of the flow around a circular
cylinder, around a backward-facing step or over a cavity (Cattafesta et al. 2003;
Collis et al. 2004). One of the first implementations of feedback flow control in an
experiment is described by Roussopoulos (1993).

Gradient-based model-independent feedback schemes are extremum- and slope-
seeking feedback controllers that search for optimal actuation parameters (Henning
& King 2005b; Beaudoin et al. 2006; Henning et al. 2007). Extremum-seeking can
be used to find distinct minima or maxima in the steady-state map. One example
is the adjustment of the height and thus the resonance frequency of a Helmholtz
resonator. This actuator may increase the pressure recovery of the detaching diffuser
flow (Garwon et al. 2003). On the other hand, when the optimal performance is
characterized by the crossover from a rising or falling to a saturated parameter
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FIGURE 1. The coherent structure dynamics determines the choice of the controller. The
structures communicate actuation effects to the sensors, e.g. pressure readings. The control law
computes actuation signals from the current state resolved by sensor readings. The actuators
manipulate excitable coherent structure dynamics in order to enforce the control goal, here the
reduction of drag. A range of feedback flow control schemes allows us to select the best-suited
control law, depending on the behaviour of the flow, as elaborated in the text.

regime, slope-seeking feedback is preferred. A case in point is the saturated effect
of an actuation amplitude on the separation region and flow reattachment over
an aircraft wing (Becker et al. 2007). Once the flow is completely attached, further
increases in amplitude will not lead to significant changes in the lift.

Control design based on experimentally identified black-box models was conducted
by Becker et al. (2005), King et al. (2004) and Henning & King (2005a). Here,
the turbulent reattachment process behind a backward-facing step was controlled
at Reynolds numbers up to 25000 based on the step height. Robust closed-loop
control based on these models was able to prescribe the reattachment length and to
compensate disturbances. Adaptive schemes were developed by Garwon et al. (2003)
to adjust the actuation amplitude. Henning et al. (2007) proposed a black-box model
to control the pressure drag of a D-shaped body at Reynolds numbers based on body
height up to 70000. Rowley et al. (2002) suppressed Rossiter modes of a cavity flow
by black-box model-based control.

Black-box models, however, do not resolve coherent structures of the flow: they
merely link input and output signals. Reduced-order vortex and POD models explicitly
describe the coherent structures as communicators between input and output. POD
models were employed for flow control of different configurations, e.g. the cylinder
wake (Bergmann, Cordier, & Brancher 2005; Gerhard et al. 2003; King et al. 2005;
Noack et al. 2003; Noack, Tadmor & Morzynski, 2004; Noack, Papas & Monkewitz,
2005; Tadmor et al. 2004; Siegel, Cohen, & McLaughlin 2003; Siegel et al. 2007, 2008)
or the cavity flow (Little et al. 2007). Introductions to POD models are provided by
Lumley & Blossey (1998)or Cordier & Bergmann (2003).

POD models are convenient for standard control design, due to their mathematical
structure. In contrast, vortex models inhibit most control design methods by their
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hybrid nature (changing phase space of vortex positions). However, vortex models
exhibit a larger dynamical bandwidth, which is crucial for the current flow control
task. The theoretical foundation of vortex models dates back to Helmholtz (1858) and
Thomson (1869). In the early twentieth century the N-vortex problem was discussed.
Von Karman (1911) used vortex models for a stability analysis of the vortex street
configuration. A numerical simulation of a mixing layer using point vortices was
conducted by Rosenhead (1931), encouraging investigations of many configurations
until the 1960s. Birkhoff (1962) found an inherent ill-posed convergence behaviour
in vortex models. This finding gave rise to doubts about the predictive power of this
modelling approach. Nonetheless, vortex models were pursued by several authors, such
as Clements (1973), who described vortex shedding in the wake of a bluff body. Later,
convergence of vortex models with finite-core radii to solutions of the Navier—Stokes
equation could be shown (Beale & Majda 1982; Krasny 1986). In the 1980s and 1990s
high-dimensional vortex models were investigated by several researchers (Ghoniem
& Gagnon 1987; Cottet & Koumoutsakos 2000; Soteriou 2003) as an alternative
approach to DNS, and extended for three-dimensional flows (Leonard 1985; Meiburg
1995). In recent years reduced-order models were proposed as coherent structure
models (Cortelezzi 1996; Coller et al. 2000) and plants for control design (Tang &
Aubry 2000; Protas 2004, 2006). In this study, reduced-order vortex models are used
to explain the physical effects of actuation and to improve control. Efficient means to
synchronize two-dimensional coherent flow structures for achieving the control goal,
a significant drag reduction, are proposed.

This paper is organized as follow. In §2, we describe the experimental setup and
the vortex model. Our study and analysis of the natural and open-loop forced flow
is detailed in §3. The observed processes are explained in §4. Experiments with
feedback controllers are outlined in § 5. Finally, we summarize the main findings and
their implications for other configurations in § 6. The vortex model and the extended
Kalman filter used in § 5 are detailed in Appendices A and B, respectively.

2. Experimental testbed and vortex model

This section provides a description of the experimental setup and outlines the vortex
model.

2.1. Wind tunnel

Experiments are conducted in an Eiffel-type wind tunnel. The maximum free-
stream velocity is approximately 20ms~! with a turbulence level of less than 0.5%.
The dimensions of the closed test section are L,,=2500 mm, H,, = 555 mm and
W,s =550 mm in the streamwise, transverse and spanwise directions, respectively. The
flow is described in a Cartesian coordinate system x, y, z; the origin is located at the
vertical and horizontal centre of the body’s stern (see figure 2).

The D-shaped body has the following dimensions: chord length L =262 mm, body
height H =72 mm and spanwise width W =550 mm. The geometric blockage of the
model in the wind tunnel is approximately 13%. Therefore, the free-stream velocity U,
is adjusted to U, .= U, JBi, according to the blockage correction method proposed
by Mercker (1980). Trip tapes are placed 30 mm downstream of the nose in order
to trigger boundary layer transition. The model is mounted on two aluminium rods
and is vertically centred in the wind tunnel. The rods have a diameter of 15 mm
and are attached to the model’s lower surface at (x, y)=(—131 mm, —175 mm) and
(x, y)=(—131 mm, 175 mm), respectively. Reynolds and Strouhal numbers are given
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FiGURE 2. Sketch of the experimental setup with the D-shaped body. For details, see text.

with respect to body height and corrected free-stream velocity:

_ Ve and St= fH.

Us,c
Here, v represents the kinematic viscosity of the fluid and f is the frequency to be
expressed as a Strouhal number. All experiments are conducted at Reynolds numbers
in the range from 23 000 to 70 000.

A sinusoidal zero-net-mass-flux actuation is effected by loudspeakers (Visaton
W200S, 4 $2) through spanwise slots (slot width §=1mm, spanwise length
250 mm) located at the upper and lower trailing edges. Harmonic actuation
g(t)=A sin(2m f4 t), with the actuation amplitude A and frequency f,, is applied
to each slot, thus generating periodical sucking and blowing. The cost of actuation is
characterized by the non-dimensional excitation momentum coefficient

ReH

S 2
cp=2— 94 ,
HU2,

where g4 is the r.m.s. value of the velocity generated by the actuator. The factor 2
accounts for the number of actuators. The actuation signal g is equal to the velocity
at the centre of the actuation slot. The frequency response of the actuator is
compensated.

The base pressure is monitored by 3 x 3 difference pressure gauges (PascalLine
PCLA02X5D1) mounted in three parallel rows on the stern at y ={—32,0, 32} mm
and z={—82.5,0,82.5} mm. Pressure gauges are calibrated and temperature
compensated. Their operating pressure range is +2.5 mbar with an accuracy of
40.25%. The free-stream dynamic pressure is monitored by a Prandtl probe. The
probe was mounted at (x, y, z) =(—1181 mm, 127.5 mm, —175 mm) and is connected
to a differential pressure transducer (MKS Baratron 220D) with a measurement
accuracy of 0.15%. Four strain gauges (HBM 6/350LY13, metering precision +0.35%)
are applied to the aluminium rods for drag force measurements. The strain gauges
are glued on a milled out section of the aluminium rods 5 mm underneath the bluff
body. Thereby, the drag on the aluminum rods does not contribute to the measured
body force. A power amplifier HBM ML55b is used for calibration and voltage
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amplification. Base pressure and drag are described by non-dimensional coefficients

Ap(y’Z7t) Fx([)
pULJ2 pUL HW/2'

respectively. Here, Ap is the instantaneous pressure difference between a stern-
mounted pressure gauge and the reference pressure, p denotes the density, and F,
is the drag force. Time-averaged base pressure and drag are denoted by cp(y, z)
and ¢p, respectively. The surface-averaged base pressure over the stern is marked
by {(cp(r)). Boundary layer conditions and velocity fluctuations in the wake flow
are acquired by hot-wire measurements, using 5 pm-hot-wires and the constant
temperature anemometer A.A. Lab Systems Ltd. AN-1003.

PIV measurements are conducted in the vertical symmetry plane (x € [0, 144] mm,
y € [-58,58) mm and z=0mm) at Rey=23000 with a spatial resolution of
dx =dy=2.3 mm. Temporal resolution is limited to 4 Hz. The PIV system consists
of a frequency-doubled Nd:YAG laser, a CCD-Cross-Correlation-Camera (PCO
SensiCam Double Shutter) and a synchronization unit. The VidPiv software of
ILA corp. is used for the computation of velocity fields. Data acquisition and
the implementation of the controllers is realized by rapid prototyping hardware
(dSPACE-PPC1005 controller). The sampling time is Az =1/1000 s.

2.2. Vortex model

Hereafter, all quantities are non-dimensionalized by H, U, . and p. Experimental
and numerical investigations show that the initial separation and roll-up of the shear
layers in the bluff body wake is dominated by two-dimensional coherent structures
(see §3.3). On a kinematic level, two-dimensional vortex models approximate the
vorticity distribution w of the flow by adding vortices to an irrotational flow with
the potential @ (e.g. Milne-Thomson 1968; Lugt 1996). The induced velocity from N
vortices at a sample point x is calculated by

cp(y,z,t)= and cp(t)=

N
u(x,)=Vo(x,1)+ > I u’(x, x;), (2.1)

i=1

where I} is the circulation and x; the position of the ith vortex. The circulation is
constant by Helmholtz’s law. The kernel #“ is derived from potential theory using
Biot-Savart’s law for the induced velocity. The vortices move with the flow:

dx,-
dt

In this paper, a reduced-order vortex model for the flow around the D-shaped
body in a wind tunnel is proposed. Approximately 650 vortices are required to resolve
the dynamics of the coherent structures. Similar models have been investigated for
the flow around a D-shaped body (Clements 1973), the flow over an edge (Evans &
Bloor 1977), the wake flow past a plate (Cortelezzi 1996), the diffuser flow (Coller
et al. 2000), and the flow around a backward-facing step (Pastoor et al. 2003). The
no-penetration boundary condition at the walls for the potential flow is enforced by
using a conformal mapping from the upper half-plane onto the D-shaped body (see
§ A.1). Boundary conditions are enforced in the computational domain. The potential
flow is represented by a pair of sources in the computational domain (see § A.2). The
effect of zero-net-mass-flux actuation is modelled by two oscillating sources at the
trailing edges of the body (see § A.3). Vortices and their mirror images transform into
a vortex solution in the physical domain that respects the no-penetration condition

—u(x;, 1), i=1,...,N. (2.2)
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at the walls (see § A.4). Vortex production at the trailing edges follows a generalized
Kutta condition a fair approximation of the production rate, while smoothing the
stochastic vorticity production in the boundary layers. In order to maintain the low-
dimensionality of the model, vortices are gradually merged (see § A.6), where a high
resolution is not required (x > 2) or faded out, when they leave the region of interest
(x > 30). The numerical integration of (2.2) is computed by a third-order, explicit
Adams—Bashforth scheme.

3. Investigation of the natural and periodically forced flow

Key features of the natural and the periodically forced (open-loop) flow around
the D-shaped body are described in §3.1 and § 3.2, respectively.

3.1. Natural flow

The flow around the D-shaped body is governed by an absolute wake instability
(Huerre & Monkewitz 1990). This mechanism generates a von Karman vortex
street with an alternating sequence of vortices at characteristic frequencies. The
two-dimensional vortex shedding in a wake of a bluff body is only weakly perturbed
by three-dimensional fluctuation (Zhang et al. 1995).

An instantaneous vorticity field of the natural flow at Rey =23 000 captured by PIV
indicating bent shear layers at the upper and lower edges is shown in figure 3(a). Two
large vortical structures appear almost at the centreline, whereas the lower vortex is
closer to the stern. Pressure readings indicate a pressure minimum at the bottommost
pressure gauges. The time-averaged and spatially averaged base pressure coefficient
is (cpo) =—0.53. This corresponds to an average drag coefficient of ¢po=0.98.
Dominant Strouhal numbers of bluff body wakes are usually within a range of 0.2
for circular cylinders and 0.26 for short D-shaped bodies (Leder 1992).

In agreement with these common observations, the frequency spectra of hot-
wire measurements at (x, y, z)=(1,0.7,0) indicate a maximum fluctuation level at
St ~ 0.23 in the current study. Upper and lower boundary layer conditions, as the
boundary layer thickness &g9, the momentum deficit thickness 8, and the form factor
Hi,, are acquired by hot-wire measurements in the vicinity of the trailing edges
(x,y,2)=(—0.01,£0.5,0) and averaged. The results are in good agreement with
measurements given by Bearman (1967) and Park et al. (2006). The large boundary
layer thickness observed at Rey =23 000 results from a small separation bubble in the
front section of the body. This phenomenon was reported by Cooper (1985) for bluff
bodies with rounded front edges. The results for the investigated range of Reynolds
numbers and the two reference cases are summarized in table 1.

Figure 3(d) displays the vorticity field obtained from a snapshot of the vortex
model. The corresponding pressure field can be calculated by solving the Poisson
equation:

Ap=—Vu--Vu'=W--W—-8--8=0, (3.1)
where Vu is the Jacobian of the velocity, the superscript T denotes the transpose
of the tensor and -+ is the double contraction. The Jacobian Vu is decomposed in
a symmetrical tensor S and a antimetrical tensor W. Here, S represents the strain
and W the rotation of a fluid element. In (3.1), the source term Q can be expressed
as the local difference of the double contraction of the rotation and strain tensors,
respectively. Inside a vortex, rotation dominates (Q > 0), which indicates a lower
pressure in the core, according to (3.1). In a plain shear layer, rotation and strain
are balanced (Q =0). On the convex side of a bent shear layer and between vortices,
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Figure 3. Natural flow of the experiment (a,b) and of the vortex model (c—e). Instantaneous
flow field of the natural flow at Rey =23 000, captured by PIV (a) and the vortex model (d)
at the reference time ¢*. The velocity field is indicated by black arrows. The spanwise vorticity
component is displayed by isolines {+12, +10, +7, +5}, where negative (positive) values are
indicated by thick (thin) lines. In (b) and (e), respectively, time series of experimentally and
numerically obtained pressure readings c,, of the topmost (—) and bottommost (——) sensors at
z=0 are displayed. The experimental pressure data are low-pass filtered. The surface-averaged
base pressure (c,) (—) is plotted in (e). The pressure distribution c,(y) (—) and the temporally
and spatially averaged base pressure (¢,) (—) are shown in (c).

The vortex street originates close to the stern. A small separation bubble and strong vortices
in the vicinity of the body are responsible for a low base pressure and thus for high drag.
Vortices are shed with the frequency St ~ 0.23.

strain dominates. A saddle point region is marked by Q <0 and is associated with an
excess pressure. Velocities and velocity gradients are rather small in the dead water
region. With Q =0, the pressure gradients remain constant, thus the base pressure
along the stern is determined by the near-wake pressure field. Hence, vortices in the
near wake leave pressure reading footprints.

An important aspect of the instability in the near wake is the strong interdependence
of the upper and lower shear layers. Referring to figure 3(d), the vortex at x =0.6,
denoted vortex A, is created by a roll-up of the upper shear layer. It subsequently
pulls the lower shear layer up and induces the creation of a new vortex, denoted B, at
x =0.2. Once vortex B grows and convects downstream, it will trigger the creation of
a new vortex, originating from the upper shear layer. Thus, strong vortices alternate
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Rey 89 8 Hp (Cp0) Cpo St B,

23000 0.22 0.017 1.19 —0.53 0.89 0.23 1.32
35000 0.18 0.015 1.19 —0.52 0.92 0.23 1.33

46 000 0.16 0.014 1.21 —0.52 0.89 0.23 1.34
58000 0.16 0.014 1.21 —0.51 0.90 0.25 1.32
70000 0.16 0.013 1.20 —0.51 091 0.25 1.32
410007 0.12 0.017 1.47 —0.57 - 0.24 -
40 000¥ 022 0.017 - —-0.55 - 0.25 -

1 Bearman (1967), H =254 mm, x= — 0.1
f Park et al. (2006), H =60 mm, x = — 0.033

TaBLE 1. Base flow parameters of the experiment and similar studies of Bearman (1967) and
Park et al. (2006). For details, see text.

in the near wake, yielding a short dead water region and strongly bent shear layers.
As explained above, this results in low pressure at the base and a high drag. The
current base pressure distribution c,(y,t") in figure 3(c) displays the asymmetrical
shedding of vortices. The creation of vortex B is visible by its footprint in the base
pressure.

3.2. Periodical forcing

The sensitivity of the flow to open-loop forcing was investigated experimentally for a
wide range of Reynolds numbers, actuation frequencies and amplitudes. Upper and
lower actuators were operated both in-phase and anti-phase, but anti-phase operation
is unsuitable to reduce drag efficiently.

Averaged base pressure and drag coeflicients are plotted in figure 4(a,b) against
the Strouhal number of the actuation. Actuators operate in-phase with a constant
amplitude ¢, =0.01, which corresponds to a maximal velocity equal to the free-stream
velocity. Both coefficients are normalized by the base pressure and drag coefficient
of the natural flow, respectively. There is a maximum base pressure at Sty ~ 0.15
for all studied Reynolds numbers, which yields a drag reduction of almost 15%. No
beneficial modification of the base pressure is observable for Strouhal numbers below
St 4 =0.05 and above St, =0.3. Experiments were performed with Strouhal numbers
up to St , =3.5. There is a striking collapse of the pressure in a small band centred at
the Strouhal number of the wake instability (St =~ 0.23). Here, the drag is increased
above the level of the natural flow.

Figure 4(c, d) illustrates the effect of different actuation amplitudes on the average
base pressure and drag for the most efficient Strouhal number St 4 =0.15. Obviously,
there are Reynolds-number-dependent bounds on ¢, before forcing significantly
increases the base pressure. Above a certain amplitude, the pressure runs into a

saturation level of (¢p) /| (Cp0) | = —0.6. At Re; =46 000 these asymptotic values are
e ~ 0.0025 and ™ ~ 0.006, respectively. In the intermediate regime, the natural

and saturation levels are almost linearly connected. The drag coefficient shows a
similar behaviour.

The effects of actuation with Sty =0.15 and ¢, =0.009 at Rep =23000 are
illustrated in figure 5 by instantaneous vorticity fields obtained from PIV and the
vortex model. The shedding of vortices from the upper and lower edges occurs
synchronously, as indicated by the flat base pressure distribution c¢,(y, ). The first
two vortices appear at a greater distance to the stern compared to the natural flow.
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FIGURE 4. Normalized and averaged base pressure (a,c) and drag coefficient (b,d). These
parameters are plotted as functions of the actuation frequency St4 at ¢, =0.01 (a,b), and as
functions of the momentum coefficients (c,d) at St4 =0.15 and Reynolds numbers 23 000 (e),
35000 (o), 46000 (x), 58000 (+), 70000 (*).

As a result, the formation of the alternating vortex street is delayed and the dead
water region is elongated. The mean base pressure increases by 40% while the drag
decreases by 15%.

The net power saving due to the actuation effect is determined in what follows. The
towing power reduction A% p is computed by

AP, =U.,.. AF,. (3.2)

Here, AF, denotes the time-averaged reduction of the drag force. The electrical power
2, of each actuator is

Qel :%eﬁr feﬁf COos @, (33)
where %.; and .54 are, respectively, the effective voltage and current applied to the
actuator, and ¢ is the phase between both. A gain |AZp|/2 P, > 1 implies a net
saving. The electrical power requirement for in-phase forcing with the most efficient
frequency Sts =0.15 and the achieved drag reduction are summarized in table 2 for
the investigated range of Reynolds numbers. We find a gain of 2.4 to 2.8 for periodical
forcing.

3.3. Two-dimensional flow characteristics

In this section the two-dimensionality of the flow under nominally two-dimensional
boundary conditions is investigated. Simultaneous hot-wire measurements at x =1
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FIGURE 5. The same as figure 3, but for the open-loop forced flow at St4 =0.15 and ¢, =0.009.
The actuation signal g is plotted in (f). Both plots (a) and (d) reveal a symmetrized vortex
formation, while the formation of the vortex street is delayed. Vortices shed with the actuation
frequency. Base pressure increases by 40% and drag decreases by 15% compared to the natural
flow. Actuation signal and topmost and bottommost pressure readings, respectively, have a
phase difference of approximately 180°.

Rey Cy AF, APp U ofp Feff ® P |[AP D[22,
[N] (W] [Vl [A] [deg]  [W]
23000 0.009 —0.087 —0.482 0.741 0.127 5.0 0.094 2.6
35000 0.008 —0.186 —1.554 1.405 0.210 7.0 0.293 2.6
46 000 0.007 —0.325 —3.669 2.514 0.285 8.0 0.710 2.6
58000 0.006 —0.504 —6.996 3.921 0.322 9.0 1.247 2.8
70000 0.005 —0.732 —12.1454 5.839 0.436 8.0 2.520 2.4

TaBLE 2. Electrical power supply of the actuators (#,;) and the saved power (AZp) due to
open-loop forcing at St4 =0.15. For details, see text.

and y= £ 0.7 are conducted with three probes at z={—1.150,+1.15} and
z={—1.74,0,+1.74}, respectively. Velocity fluctuations of the natural flow at
Rey =46000 are plotted in figure 6(a,b). The velocity fluctuations are found to
be governed by large eddies in the wake. Spanwise variations, especially the phase
differences, are small. This is an indicator for mainly two-dimensional characteristics
of the coherent structures.
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FIGURE 6. Two-dimensional characteristics of the natural flow at Rey =46000 are
demonstrated by the time series of the velocity fluctuations in the wake at x =1 and y = +0.7
(a) and y= — 0.7 (b), respectively. The three hot-wire probes were used simultaneously at
z=—174(——),z=0(—) and z= + 1.74 (— - —).

®)
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FIGURE 7. The same as figure 6, but for the open-loop forced flow at St4 =0.15
and ¢, =0.007.

The time series displayed in figure 7(a, b) for the open-loop forced flow at St, =0.15
and ¢, =0.007 reveal that actuation does not alter the two-dimensionality of the
dominant flow characteristics.

A quantitative investigation is conducted by a Fourier decomposition of the time
series. The phase of the leading harmonic is computed to calculate the phase difference
between time series obtained at the spanwise centre (z=0) and the four spanwise
displaced positions. At Rey =46 000 the phase difference is in the range of —0.4° to
1.2° for the natural flow and —5.7° to 0.4° for the open-loop forced flow. A detailed
summary of the results is provided in table 3 in Appendix C.

4. Analysis and modelling for feedback control

In order to improve control, we have to understand how the coherent structures
affect the drag, and the way control manipulates these structures. These aspects are
discussed in the following. Under open-loop control two-dimensional actuation tends
to suppress spanwise variations of the flow structures (Detemple-Laake & Eckelmann
1989). Under closed-loop conditions with sensors in a transverse plane, the appearance
of unintended and detrimental three-dimensional features is reported by Seidel et al.
(2006). In contrast to their investigation of an oscillating cylinder at low Reynolds



Feedback shear layer control 173

(a) (b) (©)
|
051 1 e
y 0 1
|
051 e 1
1
-1.0 =05 0 0 05 1.0 1.5 20 25 3.0 -5 0 5
()
051 1 coe
y 0 | y
05}t cee
-1.0 -05 0
(g) (h) (@)
051 1 e
y 0 / y
(
05} -
-1.0 =05 0
()
05 /
y 0 ( y
051 S
-1.0 =05 0 0 05 10 1.5 2.0 25 30 95 100 105

& x '

FiGURE 8. Vorticity distribution and base pressure derived from the vortex model illustrating
the transient behaviour of coherent structures in the wake. The vortex model simulation starts
with the potential solution at t =0. Subsequent stages are: (a—c) startup vortices at t =1, (d—f)
almost independent shear layers at t =11.5, (g—i) early interaction (wake instability) at r =23.5
and (j—I) periodical wake at r =98.5. The flow state is depicted as in figure 3(c—e).

numbers (see also Siegel 2007), the feedback actuated flow structures relevant of the
D-shaped body wake remain predominantly two-dimensional (as outlined in §3). This
can be linked to the fixed separation points at the trailing edges and the turbulent
regime of the investigation. Thus, a two-dimensional vortex model is used to explain
the spatial development of the wake. The transient development starting from the
potential flow inspired our employed feedback controller. As seen in figure 8, one
observes four distinct states in the evolution of the wake:

(a) Startup vortices. The fluid starts to move and separates at both trailing edges. The
shear layers roll up into almost symmetrical vortices. The base pressure distribution
is symmetrical as well. These startup vortices convect downstream and eventually
dissipate.
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Shear layer Asymmetric Shear layer Symmetric Asymmetric
evolution wake evolution wake wake

FiGURE 9. Sketch of the coupling between wake and shear layer vortices of the natural flow
(a) and the decoupling due to actuation (b). In (a), vortex A triggers the roll-up of the upper
shear layer to a vortex B, by inducing the downward velocity ua. This lumping of vorticity
(B) has an impact on the lower shear layer as well. The roll-up of vortex C close to the lower
edge is initiated by the induced velocity ug. A decoupling of wake and shear layer processes
is achieved by actuation at the trailing edges (b). By synchronizing the phasing of vortices
in the upper and lower shear layers, the appearance of asymmetries is delayed. The induced
velocities up and ug of the vortices A and B on vortex C almost annihilate each other. The
same is true for vortex D. Thus the wake instability is mitigated.

(b) Shear layer vortices. Shear layers are sensitive to free-stream disturbances. Due
to convective Kelvin—Helmholtz-type instabilities, these disturbances are amplified in
the streamwise direction, hence shear layer vortices evolve. Since the characteristic
frequency of this process scales with the shear layer thickness, it is one magnitude
above the characteristic frequency of the fully developed wake. Thus, shear layer
vortices in this phase are rather weak, because only small portions of vorticity are
lumped in each vortex. Further downstream, the small vortical structures may roll
up to stronger vortices due to vortex pairing. The base pressure distribution is still
almost symmetrical.

(c) Wake instability. At this time, the interaction between upper and lower shear layer
vortices starts. Any perturbation of the symmetry between upper and lower vortex
configuration is amplified. Vortices in the far wake are aligned in an alternating order
with a stretched spatial wavelength. The wake instability locks on to large vortical
structures. Thus, the alternating sequence of vortices in the far wake has an impact
even on upstream processes, in agreement to the implications of an absolute instability.
The free-stream disturbances are outpaced by nearly periodic perturbations induced
by far-wake vortices. These vortices trigger an alternating shedding of larger vortices
in the near wake. The average base pressure declines, while the instantaneous base
pressure becomes increasingly asymmetrical.

(d) Vortex street. Mutual interaction of both shear layers intensifies alternating
shedding (figure 9a). The dead water region decreases. A fully developed vortex street
appears rather close to the stern as described in § 3.1. The transition time depends on
the initial level of asymmetries. The average base pressure has reached its minimum.

In order to increase the base pressure and reduce the drag, the dead water region
has to be elongated and the alternating character of the wake has to be mitigated or
delayed. From the control perspective, the suppression of the wake instability is the
enabler to increase pressure. There are at least four possibilities to suppress or delay
the wake instability by active means:

(a) direct opposition control of vortices in the near wake;
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(b) mitigating the evolution of large-scale vortex formations by high-frequency
forcing;

(c) breaking large-scale vortex formations by forcing three-dimensional structures;

(d) enhancing the initial symmetry by forcing synchronous vortex shedding.

In search of a tunable and low-cost active control device for existing bluff bodies,
we select the last method in the course of this paper. Zero-net-mass-flux actuation
increases the magnitude of perturbations in the initial shear layer. The convective
instability, which yields shear layer vortices due to roll-up, starts with a larger
initial amplitude. From analysis of vortex models of various configurations (mixing
layer, backward-facing step, D-shaped body), we know that actuators also command
the phasing of vortex roll-up. Transferring this behaviour to our control goal,
synchronization of the upper and lower shear layers should be achieved by enforcing
in-phase vortex generation. Perturbations of the symmetry would be reduced and
therefore the evolution of the wake instability could be delayed. However, in the far
wake the alternating character imposed by the wake instability is still a pronounced
feature (figure 9b).

The effect of actuation on the phase difference between the vortices in the two shear
layers is analysed by the phase angles between the actuation signal g(¢) and pressure
fluctuations c,(y, z, t) close to the upper and lower edges. The vortex model predicts
a phase angle of 180° for optimal open-loop forcing (St4, =0.15). Notwithstanding
stochastic short-term effects, pressure fluctuations are also strongly dominated by
oscillations at the actuation frequency. A detailed examination of these predictions in
experimental results is given in the following.

Phase angles A¢,, =, {g(t)u/1, cp(+0.44, z, 1)}, calculated either with pressure
readings at the upper or lower edge, are displayed in figure 10(a,b) as functions of
the Strouhal number of actuation (open-loop). Additionally, these pressure readings
are processed by harmonic analysis. We are interested in the amplitudes

N,

2 | i
P(St)=~- > cply = 2044, 2 =0, 1) 5" 4.1)
k=1

s

of harmonic oscillations with the actuation frequency St=St, as well as the
wake instability frequency St=Sty =0.23. Here, N, is the number of samples.
The imaginary unit is denoted by i. The amplitudes P(St) are normalized by the
r.m.s. value of the pressure readings and plotted versus the actuation frequency in
figure 10(c,d).

Four ranges of actuation frequencies are examined in detail: see the frequency
ranges (i)—(iv) in figure 4(a). In all cases, the Reynolds number is 46000 and both
actuators operate in-phase at a constant actuation amplitude ¢, =0.01.

Forcing frequencies in the range 0.1 <St, <0.2 (ii) yield a high base pressure
(figure 4a). Vortex creation in the upper and lower shear layer occur simultaneously,
as indicated by almost identical phase angles between the actuation signal and pressure
readings in figure 10(a, b). Both phase angles ¢,,, are approximately 170°, which is in
accordance with 180° predicted by the vortex model. This figure implies that vortices
appear when the actuators switch from blowing to sucking.

Most of the pressure fluctuations are imposed by vortices shed at the actuation
frequency, as can be seen by P(St,) in figure 10(c). The influence of the wake instability
on the pressure fluctuations is low, as indicated by P(Sty) in figure 10(d). Actuation
in this frequency range is beneficial, since it triggers strong and synchronized coherent
structures in both shear layers. This allows for the evolution of an elongated dead
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FiGure 10. Phase and frequency locking of the shear layers due to open-loop control in terms
of the Strouhal number at Rey =46000 and ¢, =0.01. Phase angles between the actuation
signal and pressure readings are plotted for actuators and pressure gauges at the upper (—)
and lower (——) edges in (a) and (b), respectively. In each case, the results of the three spanwise
arranged pressure sensors (see figure 2) are averaged (curve). The vertical lines terminated by +
(actuation at upper edge) and o (actuation at lower edge) indicate the range of minimum and
maximum values. In (¢) and (d), the normalized amplitudes P(St,) and P(Sty) of harmonic
projections of the pressure readings (upper edge —; lower edge ——) on the actuation frequency
and on the wake instability frequency, respectively, are plotted.

water region. Both shear layers exhibit frequency and phase locking. There is a
minimum amplitude required to enforce this phasing (see figure 4c¢).

There is a lower limit to actuation frequencies, where forcing has no beneficial
effect. Below St, =0.1 (i), phasing between upper and lower vortices differs as ¢,
and ¢; diverge, hence synchronization is poor (figure 10a, b). Moreover, the sensitivity
of the shear layers for low-frequency forcing is small. Therefore, P(St4) decreases
and P(Sty) increases (figure 10c,d). In other words, the locking effect decays at low
actuation frequencies.

The experiments presented above indicate a pronounced minimum of the base
pressure below the unactuated value, when forcing the frequency of the wake
instability at St, = Sty =0.23 (iii). In this frequency range, the phase relation between
actuation and pressure readings is different for upper and lower sensors (figure 10a, b).
Despite forcing in-phase, the phasing of vortices, as indicated by ¢, and ¢, in the
upper and lower shear layer is anti-phase and asymmetries are pronounced. Thus,
the authority of the actuators to command the phasing of vortex shedding is poor in
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this regime. Apparently, the perturbations imposed by the wake instability outpace
the attempt to synchronize the shear layer evolution. In fact, the actuators increase
the perturbation level of the shear layer in a frequency range that is perfectly suited
to amplifying the wake instability. As a result, the base pressure is decreased by 10%
whilst drag is increased by some 5% (figure 4a,b).

Frequencies in the range St, > 0.3 (iv) are beneficial with respect to base pressure
and drag but this effect declines at higher frequencies (figure 4a,b). At high
frequencies, there is still some authority to command phasing, as vortices are released
synchronously (compare ¢, and ¢;), but fluctuations imposed by these vortices and
the wake instability are almost of equal size, as can be seen by comparing P(St,) and
P(Stw) (figure 10c,d). High-frequency forcing creates small vortices. Due to roll-up
and vortex pairing triggered by the wake instability in the far wake, large alternating
coherent structures still appear relatively close to the stern, which reduce the base
pressure.

5. Feedback control

As derived in the previous section, our feedback control should decouple shear
layer development and wake processes. Increasing the initial symmetry of the flow
mitigates the wake instability. This is achieved by forcing a symmetrical vortex
formation in the near wake due to a synchronized development of both shear layers.
In §5.1, an adaptive controller is proposed that respects these requirements and finds
optimal actuation parameters. A physically motivated controller that explicitly forces
a symmetrical evolution of the shear layers is outlined in §5.2. In both cases, control
is applied to the steady-state base flow.

5.1. Adaptive controller

Slope-seeking feedback is an adaptive method for the control of nonlinear plants. It
is an extension to well-known extremum-seeking schemes and is described in detail by
Krstic & Wang (2000) and Ariyur & Krsti¢c (2003). In §5.1.1, a slope-seeking feedback
scheme for maintaining the optimal actuation amplitude is outlined. Experimental
results are presented in §5.1.2.

5.1.1. Slope-seeking feedback scheme

A block diagram of the slope-seeking feedback scheme is displayed in figure 11.
The plant is considered as a block with the input variable c,(¢), being the actuation
amplitude, and the output variable (cp(z)), represented by the controlled base pressure.
We assume that the plant can be described by two characteristic features:

(1) a plateau-type steady-state input-output map (cp) =m(c,);

(2) a state-space model representing the dynamics of the controlled process.

The control idea is to achieve a state of the plant which is marked by a certain
reference slope m,,,=d (cp) /dc, in the steady-state map. Side constraints for this
kind of feedback are fast process dynamics in comparison to variations of the input.
Neither the dynamical model nor the steady-state map need to be known.

The controller consists of a high-pass and low-pass filter, an integrator, a
proportional element with the gain k, and a sine generator. The control input c,(t)
is calculated by adding the adaptively computed correction term Ac,(¢) to the initial
control input ¢, ¢ and superimposing a sine signal with a small amplitude a and the
frequency wg, =21 St. Thus, the applied actuation signal is

cu(t)=cp0+ asin(wsn 1) + Ac,(t). (5.1)
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FiGure 11. Block diagram of the slope-seeking feedback scheme consisting of the plant, a
high-pass (HP) and low-pass (LP) filter, an integrator (/) and a proportional gain (k). The
existence of a steady-state map is a prerequisite of this method, whereas the explicit knowledge
of (¢p) =m(c,) and the dynamical model is not needed. For more details, see text.

If the period length of the harmonic perturbation is larger than the largest time
constant of the dynamic plant, an almost sinusoidal output (cp(z)) will be obtained,
initially centred at (¢p), =m(c, ). This output perturbation is analysed in order
to detect the slope of the input—output map and then used for gradient-based
optimization. The mean value (initially (cp),) is removed by the high-pass filter. The
product of the filtered output and the zero-mean sine signal sin(wg, #) indicates the
local slope m’(c,) of the unknown map. It leads to a non-zero-mean signal obtained
by the low-pass filter as long as the plateau is not obtained. If m'(c,) is larger than

m,,. the 1nput signal ¢, (z) has to be increased. To calculate the difference between
the current m’ and the reference, m,,,, the effect of the high-pass filter has to be
accounted for, with an appropriate amplitude and phase correction. This is done by
subtracting the output of the low-pass filter from the filtered reference

r(m;e_,,)=—am”fRe{. L } (52)

2 1w + wyp

instead of subtracting it from m,,, itself. Here, Re{ } denotes the real part of a
complex value. If this difference is positive, the integrator will increase its output,
which after multiplication by k leads to an increased value of Ac,(z). The cutoff
frequency of the high-pass filter is wyp.

The slope-seeking scheme is an adaptive closed-loop type of controller that
guarantees closed-loop stability if designed properly. The speed of convergence is
determined by the choice of certain design parameters, as the gain k, the cutoff
frequencies of the high-pass and low-pass filter, the amplitude a and the frequency
wsin of the sine signal. Cut-off frequencies of the high-pass and low-pass filter need
to be lower than the frequency of the perturbation signal. In addition, the gain k
needs to be small. The overall feedback system has a fast, a medium and a slow time
scale corresponding to the dynamics of the plant, the periodic perturbation and the
filters in the slope-seeking scheme, respectively. If the characteristic time scale of the
plant varies due to uncertainties, the time scales of the perturbation signal and the
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FIGURE 12. Steady-state map (cp) = f(c,) obtained from open-loop experiments (a) and
experimental implementation of slope-seeking feedback (b—d). The controller adapts the
actuation amplitude (b), until the saturation level of the base pressure (c) has been reached.
The Reynolds number is 46 000 (d). The actuation frequency is fixed at St4 =0.15.

filters have to be slower than the slowest time scale of the plant’s dynamics. The main
advantage of slope-seeking control, that no dynamic model of the plant is required
for controller synthesis, is enabled by permanent harmonic perturbations of input
and output signals.

In the present study, the momentum coeflicient c,(¢) is chosen as the input variable,
and the output is given by the spatially averaged base pressure coefficient {(cp(t)).
For the experiments the parameters of the slope-seeking controller have been selected
appropriately. The cutoff frequencies of both the high-pass and low-pass filter are
set to wyp =wrp =21 St4/40. The frequency of the sine signal is equal to the cutoff
frequencies of the filters, while for the amplitude a = 1.1 x 1073 is selected.

5.1.2. Experimental results of slope-seeking feedback

Figure 12(a) illustrates the steady-state map with the mean base pressure coefficient
as a function of the momentum coefficient at a constant Reynolds number 46 000
obtained from the open-loop experiments. This steady-state map is characterized by
a plateau at ¢, > 6 x 107>, The control goal is to find the maximum pressure where
the least control input is necessary. This condition is considered as being satisfied
when m;,, < 5.

Experimental data for a single operating condition are illustrated in figure 12(b—d).
The controller starts at ¢, =1.9 x 107>, Sinusoidal modifications of ¢, are applied
to obtain the local slope. According to the gradient, the actuation amplitude is
raised until the crossover to the plateau has been reached. This leads to a significant
increase of the base pressure coefficient as shown in figure 12(c), corresponding to the
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FiGURE 13. The same as figure 12, but for slope-seeking feedback in experiment at Reynolds
numbers increasing with time (d). In (a), steady-state maps (cp) =m(c,) are displayed at
various Reynolds numbers 23000 (o), 35000 (o), 46000 (x), 58000 (+), 70000 (*). These
maps are used only to indicate the success of control: they are not required for the controller.
The actuation frequency is fixed at St4 =0.15. In (b—d), time is normalized by the oncoming
velocity associated with Rey =46 000.

steady-state map. In this experiment, the reduction of the drag coefficient by 15%,
which has been observed for open-loop forcing, is repeated.

The advantage of slope-seeking feedback is its ability to take into account changing
operation points. This property is elucidated by a variation of the Reynolds number,
which is increased continuously from 40500 up to 70000 (figure 13d). The steady-
state maps for various Reynolds numbers are displayed in figure 13(a). The optimal
actuation amplitude decreases with increasing Reynolds number. The experimental
results in figure 13(b, ¢) indicate that the desired averaged base pressure (cp) = —0.3
is maintained with the minimum control input.

5.2. Phase control for shear layer synchronization

A beneficial effect with respect to drag reduction is achieved by open-loop control
and its adaptive, slope-seeking variant, when actuation parameters are selected in
order to synchronize upper and lower shear layer development. Both strategies rely
on a lock-in mechanism, enforced by the strong effect of symmetric actuation, at both
the upper and lower edges of the bluff body. In contrast, the focus of the strategy
outlined in §5.2.1 is on the estimation, explicit utilization and manipulation of the
phase of the shear layer periodicity. As will be seen in §5.2.2, this leads to equal or

superior performance, with only a single actuator, translating to a reduction in the
actuation power requirement.
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g=Asin (0+ Ag) 0(1)

FIGURE 14. Sketch of a single actuator configuration implementing the proposed phase
controller. The estimated phase of the pressure oscillations at the lower edge is utilized
to calculate the actuation signal, which is applied to the upper actuator.

5.2.1. Implementation of phase control

The guiding principle of the phase feedback is illustrated in figure 14. The pressure
fluctuations induced by vortex shedding at the lower edge of the body are monitored
at x=0, y= —0.4, z=0. These pressure fluctuations are approx1mated by a simple
s1ne function ¢p(t)=¢o + ¢ sind, with the phase 9(t)—90 + &t and the frequency

=2n $t. The hat marks estimated quantities.

The parameters ¢y and ¢; are assumed to be slowly varying (nominally, constant)
and 0 is assumed to grow linearly; their instantaneous values are estimated in real
time by a dynamic observer, realized by an extended Kalman filter (EKF), which is
described in Appendix B. Based on the estimated phase 0, a harmonic actuation signal
g(t)—As1n(9 + A¢) is calculated and applied to the upper actuator slot only. The
term A¢ = 180° represents the desired angle between actuation and pressure readings
as discussed in §4. The amplitude A corresponds to a momentum coefficient of
¢, =7.5x 1073, Since we only use a single actuator, the effective impulse contribution
is only half that amount (¢¢/ =3.8 x 107%).

5.2.2. Experimental results of phase control

Our proposed phase controller is tested in our experimental rig at Reynolds number
46 000. Control is applied at r =0 and decreases the drag at the same rate as open-loop
forcing or slope-seeking feedback with optimal actuation parameters (figure 15) Time
series of the sensed and estimated pressure oscillations at the lower edge are in good
agreement, indicating a proper estimation of the amplitude ¢ and phase 0 (figure 15a).
The estimated frequency of the leading harmonic displayed in figure 15(b) is close to
the natural instability frequency of St ~0.23, when actuation is off, and decreases to
St ~0.15 when control is applied. Based on the phase estimation an almost harmonic
actuation signal for the upper actuator is calculated (figure 15¢). The normalized drag
coefficient plotted in figure 15(d) decreases by at least 15% after ten vortex shedding
periods. Comparing the effective impulse coefficient ¢/ =3.8 x 10~ used here, with
the results of slope-seeking feedback at Rey =46 000 (c, ~6.7 x 1073, see figure 12b),
we only need 56% of the actuation energy.

Hot-wire measurements in the controlled flow, as described in §3.3 for the
natural and open-loop forced flow to corroborate the predominantly two-dimensional
character of the coherent structures, are presented in figure 16(a,b). The coherent
structures remain two-dimensional under feedback control as well.
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FiGURE 15. Phase control in experiment at Rey =46000 (see figure 14). Control starts at
t =0. In (a), pressure readings at the lower edge (sensed —, estimated —) are displayed. The
estimated oscillation frequency and applied actuation signal are plotted in (b) and (c). The
success is demonstrated by the decrease of the normalized drag coefficient in (d).
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FIGURE 16. The same as figure 6, but for the phase controller in experiment at Rey = 46 000.

Robustness to changing operating conditions of the phase controller is demonstrated
by a sweep of the Reynolds number from 23000 to 70000 (figure 17a). As indicated
by figure 17(b), the average drag is reduced by 15% compared to the natural flow,
throughout the experiment.

The importance of adding A¢ = 180° to the estimated phase before calculating the
actuation signal is elucidated in figure 18. Control is applied to the steady-state base
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FIGURE 17. Phase control in experiment for changing operating conditions. While the Reynolds
number increases from 29000 to 70000 (a), the average drag remains almost constant at
15% below the baseline (b). Time is normalized by the oncoming velocity associated with
Rey =46000.
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FIGURE 18. Phase control in experiment at Rey =46000 with two modes: control starts at
t=0 in mode (1) with A¢p=0°, and switches to mode (2) at t=1400 when A¢ jumps to
180° (a). The estimated oscillation frequency St and the envelope of the applied actuation
signal g.n, are plotted in (b) and (c), respectively. Drag increases while applying A¢ =0°,
thus amplifying the natural alternating vortex shedding, and decreases for A¢ = 180°, where
symmetrical vortex shedding from both shear layers is enforced (d).

flow at r=0 with A¢p=0° (figure 18a). In this mode, the alternating character of
vortex shedding is enhanced, as can be seen by the increase of drag (figure 18d) and
the accentuation of the natural instability frequency (figure 18b). At t =1400, the
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FIGURE 19. The same as figure 3(a, b), but for the implemented phase controller in experiment.
The sensor at the lower edge is marked by a rectangle at the stern of the body. Actuation is
applied at the upper edge only.

phase offset is increased to A¢ =180°. Drag and estimated frequency take the values
described before.

In figure 19, the instantaneous vorticity field obtained from PIV at Rey =23000
is displayed. The coherent structures resemble those that appear in the open-loop
forced flow (figure 5a). The controller tunes itself to an average excitation frequency
of St, ~ 0.15. We emphasize, that this frequency is not explicitly selected, but is a
result of linking the upper to the lower shear layer evolution.

The controller is able to mimic the effect of two actuators while in fact using only a
single actuator. This ‘redundancy’ has two beneficial consequences. Firstly, energy can
be saved, since only one actuator is required. Thus, regarding the power requirement
of a single actuator and the power saved due to drag reduction, a gain of 4.5 is
found. A second benefit—and this is even more important—is a proof of our physical
understanding of the flow. Our control idea, to directly decouple wake and shear layer
processes by synchronization, is the key to explaining and improveing the mechanics
of drag reduction in wake flows.

6. Conclusions and outlook

In this study, we have proposed open- and closed-loop control strategies that
achieve up to 40% base pressure increase associated with a 15% drag reduction for
the D-shaped body. The net energy balance is positive: the invested actuation power
is returned by more than four times via the associated reduction of towing power.
In the current experimental setup, actuation was only applied to half the span width
of the body. Applying actuation to only a quarter of the span width almost halves
the achieved drag reduction. Extrapolating the almost linear relation between drag
reduction and spanwise actuator extent, we expect an increase of the drag reduction
from 15% to up to 30% when extending actuation to the full span. Additionally, the
return per actuation power investment could be increased by more efficient actuators.

The key enabler for energy-efficient control design was the physical understanding
obtained from a reduced-order vortex model. This model resolves the coherent
flow structures and the effects of actuation. The natural flow is characterized by
a short dead water region and alternating eddies in the vicinity of the base. Both are
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FiGure 20. Time scales, robustness and required modelling effort of different controllers.

responsible for a low base pressure and thus for a high drag. The proposed controllers
enforce a decoupling of the vortex formation in the shear layers and the wake by
synchronizing the roll-up of upper and lower shear layers. This delays the appearance
of asymmetries and thus suppresses the effects of the wake instability. The dead water
region is enlarged and the base pressure increases.

Evidently, our control approach is based on a choice of actuators, sensors and a
control law tailored to a model-based control mechanism. The question arises whether
the control law can be improved and if targeting other physical control mechanisms
might be more efficient. In principle, our control idea can be realized by open-loop
control. However, actuation frequency and amplitude have to be selected carefully
depending on the Reynolds number. Otherwise, actuation energy is wasted. In the
worst case, actuation can even increase the drag by amplifying the wake instability.
Nonetheless, industrial application of open-loop control for drag reduction of trucksf
and compacti cars, by blowing at the trailing edges, is imminent.

Closed-loop schemes can enhance efficiency of active control in a wide range of
operating conditions. The benefits and drawbacks of different closed-loop controllers
are outlined in figure 20.

Controllers based on black-box models are useful for stabilizing a working point. In
this study, we are interested in minimizing the drag, rather than stabilizing a certain
condition. Therefore, black-box control was not investigated. Instead, slope-seeking
feedback is utilized for an automatic adaptation of the optimal actuation amplitude
under changing Reynolds numbers. The controller operates on a time scale that is
two orders of magnitude larger than the vortex shedding period. Robustness and
ease of implementation in experiment make this approach convenient for automatic
identification of good actuation parameters. The most efficient control is realized
by a physically motivated phase controller which explicitly synchronizes upper
and lower shear layer evolution by design. This controller is tailored to the key
physical processes of the system, which are obtained from a coherent structure
model. This has two advantages. Firstly, the control goal can be achieved with
a lower level of actuation energy. Secondly, the adaptation of the controller to
disturbances and changing operation conditions is fast, since it operates on the time

1 e.g. Volvo, Great Dane Trailers, Georgia Tech.
I e.g. Renault Altica.
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FIGURE 21. Drag reduction by different active means of wake manipulation.
For details, see text.
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scale of the physical processes. Often, a physically motivated controller exhibits less
robustness compared to gradient-based controllers, since it is bound to the range
of validity of the nonlinear reduced-order model. However, the vortex shedding
process investigated in this study is stable for arbitrary Reynolds numbers, which
ties robustness to the ability to properly identify the shedding phase.

Our drag reduction strategy relates to other physical mechanisms that allow wake
control, as indicated in figure 21. These other approaches include direct methods of
opposition control and indirect methods to energize the shear layers.

Numerical and experimental investigations of opposition control were conducted by
Siegel et al. (2003) and Gerhard et al. (2003) for the cylinder flow based on reduced-
order POD models. Actuation is affected by transversal oscillations of the cylinder
or an oscillatory volume force applied downstream of the cylinder, respectively. Both
methods achieve an elongated recirculation bubble by a direct opposition control
(figure 21a) of the wake structures. Applicability is restricted to the laminar Reynolds
numbers regime, as turbulent flows tend to elude suppression strategies by forming
new structures.

Wake control by energizing the shear layers (figure 21b) was investigated by several
authors with different control methods. Park et al. (2006) propose passive vortex
disruptors (tabs), which enlarge the dead water region by mitigating the development
of large vortical structures. The study includes experiments and large-eddy simulations
in a range of Reynolds numbers from 20000 to 80000 and 320 to 4200, respectively.
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The base pressure increases by 30% for an optimized tab configuration. A similar
but active controller was proposed by Kim et al. (2004). Protas & Wesfreid (2002)
numerically studied the effect of open-loop control on the formation of the wake flow
behind a cylinder at a Reynolds number based on the diameter of 150. They obtained
results similar to those presented in our study. A significant drag reduction is related
to an elongation of the recirculation bubble by supporting an unstable symmetric
state. Control is applied by cylinder rotations at various frequencies, which turned out
to be energetically inefficient at low Reynolds numbers. Wu et al. (2007) completely
suppressed the von Karman vortex street of a circular cylinder. In their numerical
investigation at Reynolds numbers up to 5000 a drag reduction of 85% was achieved
by generating travelling waves on the flexible surface of the body. The invested power
for actuating the surface is found to be 94% of the power saving. Extremum-seeking
feedback control was applied by Beaudoin et al. (2006) to a bluff body configuration
that is similar to a backward-facing step. Actuation is implemented by a rotating
cylinder at the trailing edge. The rotation frequency is adaptively controlled in order
to minimize the drag (up to 5%) with a given power requirement.

The phase controller proposed in this study marks a change of paradigm. The
two-dimensional phase control strategies investigated by Siegel et al. (2003) and
Gerhard et al. (2003) aim at a suppression of the wake structures, by generating
anti-cyclic control forces. As mentioned before, these methods are restricted to a
laminar regime. The proposed strategy promotes symmetrical shear layer structures
without significantly energizing their fluctuation level. Thus, the formation of the
vortex street is delayed at low-actuation amplitudes (figure 21c). Furthermore, our
strategy seems to be applicable in a turbulent regime.

The very mechanism of intervening in the coupling between the shear layers and
the vortex formation can be envisioned to be applicable to three-dimensional flow
configurations, e.g. for flows behind spheres. A rigorous comparison is still needed to
verify this understanding. It should be noted that nature provides its own solution to
reducing wake-induced drag (figure 21d): the strokes of a fishtail create a propulsive
jet flow, by inverting the vortical structure in the wake (Ahlborn 2004).

The authors emphasize the superiority of feedback control in contrast to open-
loop control. In steady low-turbulent wind tunnel experiments open-loop actuation
may be optimized to a level which is comparable to closed-loop control. In real
world applications flow control has to cope with varying oncoming velocities, high
turbulence levels and other perturbations. Hence, by utilizing feedback design, the
benefits of active flow control can be fully exploited. In future work, the authors will
pursue the direct usage of reduced-order vortex and Galerkin models as plants for
control and observer design, targeting the industrial application of closed-loop flow
control.
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Appendix A. Vortex model

In this section, the building blocks of the vortex model are outlined. We recapitulate
the kinematics of the model from (2.1) for convenience, and decompose the stationary
potential @, from the unsteady actuation potential @,,:

N
u(x, 1) =Vo,(x) + Vo, (x. 1) + Y _ It u’(x, x;). (A1)

i=1
A.1. Conformal mapping

Following Clements (1973), Evans & Bloor (1977), Cortelezzi (1996) and Coller et al.
(2000), the no-penetration condition is enforced by employing a conformal mapping.
This procedure is computationally cheaper and more accurate for low-order vortex
models compared with a computational panel approach (see e.g. Fletcher 1988).
The conformal map bijectively transforms the computational domain — the upper
half-plane ¢ =& +in with &€ € R and n € R™ — into the physical domain. In the
computational domain, the no-penetration condition with discrete vortices is satisfied
by introducing image vortices with the abscissae as the axis of reflection.

The conformal mapping from the computational domain, ¢ =& + in, into the
physical domain, z=x + iy, is obtained by integration of the following Schwarz—
Christoffel transformation:

dz_c Ver—1

e lo—a
The map z(¢) is expressed by

z(¢) = C2+C121a<2a log(¢ + v (2—1)

— Y /2

where Cy,a € R. (A2)

1 — 2 2
+\/a2—110g< ! "H;ia V¢ 1)) CeC. (A3)

The constants a/+/a? —1=h/(h— H), C; = h/t and C, = —7i are obtained from the
equation of continuity and from geometrical considerations. The imaginary unit is
denoted by i. The inverse mapping ¢(z) is calculated numerically with the Newton—
Raphson method. No analytical solution has been found.

A.2. Potential flow

Vortex models yield potential flow solutions of the Navier—Stokes equation with
singularities at the vortex loci. The conformal mapping is used to satisfy the no-
penetration condition at the walls in an efficient manner. The potential flow solution
is generated by a pair of point sources at {; =+ a, which is mapped to x — —co.
The complex source potential is transformed to the physical domain by applying the
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chain rule of differentiation:

dwe
de Z 2 r;—gn

dwz de ¢
dz  d¢ diz_'ws(z)’
R Z
Vo, (x) = etwi@) ) (A4)
—Im{wi(z)}

The source strength Q,=2h/(h — H) corresponds to the flow rate in each cross-
section of the physical domain. The velocity field generated by both sources in the
physical domain describes a potential flow around the aft section of the D-shaped
body without separation. The abscissa of the ¢-plane represents wall streamlines in
the physical domain.

A.3. Actuation

The actuation is modelled by two harmonic oscillating sources near the trailing edges
of the body, — following the authors’ work for the backward-facing step configuration
in Pastoor et al. (2003). Thus, for the actuated flow, a time-dependent potential is
added to the potential flow. The corresponding velocity field reads

_ (Re{wi(z, 1)}
Vo,(x,t) = (—Im{w;(z, t)}> , (A5)
where
dWi(r) _ dwids Wiz )
dz d; dz et
dWi(t) O.(1) 1
df B Z 2n g_é—n

This field fulfils the boundary conditions, as long as the sources are placed on the
contour of the body. The position ¢, of the actuators is adjusted to blow with an
angle of attack of 45°at the point of insertion of vortices (see below). The strength
0,(t) depends on the selected actuation. The instantaneous mass flux into the upper
half-plane is chosen to be similar to the corresponding quantity of the actuators in
experiment.

A.4. Vortex elements

The no-penetration condition for a potential flow superimposed onto a vortex flow
is fulfilled with a virtual vortex with mirrored coordinates and opposite circulation.
Similarly, an ensemble of vortices is supplemented by their image vortices. The N
vortices at the time ¢ in the physical domain induce the velocity

. B Re{wi(z, 1)}
u®(x,t) = (—Im{wﬁ(z,t)}) , (A6)
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where

aWie) _ awide o
dz  d¢ dz vie

N

dwie) al 1
¢ ch—f:n Z::Mq—c(r)

=1

The coordinate ¢, denotes the current position of the nth vortex and I, its circulation.
The overbar indicates the complex conjugate of a complex number. The circulation I,
of each vortex is preserved according to Kelvin’s law. When the velocity is prescribed
at the centre of the vortex element, the velocity calculation is modified according to
Routh’s theorem (Milne-Thomson 1968). In this case, the induced complex velocity
at z, reads

Z o1 | . T, d’¢/dz?
wi(z,, t) = 2271{” {J(t ETW d712n "o 2dg/dz |,

/#”

Up to now, a point vortex discretization has been assumed in agreement with
potential flow theory. The discontinuity in the vortex field is regularized in a more
refined model by Hamel and Oseen. Their solution for the azimuthal velocity u, as
a function of the distance r between vortex and sample point smoothly connects a
Rankine vortex core at r — 0 with the potential vortex at r — oo,

u,(r)= 2%(1 —e R (A7)

where R denotes the core radius of the vortex. The initial core radius at the trailing
edges is chosen to be similar to the boundary layer thickness. A linear temporal
growth of the core diameter is implemented to account for turbulent diffusion of
vorticity.

A.5. Vorticity production

Experiments and simulations indicate straight shear layers emerging from the upper
and lower edges of the body in the direction of the oncoming flow. Giesing (1969)
proposes a generalized Kutta condition for the idealized infinitely thin shear layer in
inviscid flow. According to this condition, the shear layer is aligned with the oncoming
flow. The circulation contribution dI" of a small shear layer segment of the length dx
is

dr = (Ulower - upper) dx (A 8)

where U,,,.- and Uj,y.r are the velocities above and below the shear layer, respectively.
This criterion is in good agreement with experimental and numerical investigations
of the flow around a D-shaped body.

In our vortex model, Giesing’s solution is discretized by inserting vortices each time
step At with a circulation |I"'| = U?At/2 at x = U; At /4 and y = 0.5 (Clements 1973).
The circulation of vortices is negative at the upper edge and positive at the lower
edge. The velocity U; is computed at y= + 0.7. To avoid numerical problems with
the singularities of the Schwarz—Christoffel transformation at both edges, vortices are
lead a short distance away from the singularity (x < 0.05).



Feedback shear layer control 191

A.6. Vortex merging

A discretization parameter of our model is the number of vortices consistent with
the desired low-dimensionality. The perpetual creation of new vortices increases the
order of our model. This order can be reduced by merging two vortices when their
distance is below a critical value. The result of a merging process is one vortex with
the combined circulation located at the barycentre of both predecessors. A reasonable
compromise between accuracy and dimensionality is obtained by a merging distance
which increases linearly from R =0.05 at x =0 to R=0.5 at x < 10.

Appendix B. Extended Kalman Filter

An extended Kalman filter (EKF) is an established and efficient method to estimate
the state of a dynamical system from a series of incomplete or noisy measurements. A
good source is Gelb (1986) and a description of the method used here can be found
in Tadmor (2004). For completeness, this section begins with a brief review of the
EKF framework, followed by the specifics of the implementation used in this article.

A dynamical system can be described by

a=f(a, g.t)+w (B1)

where a is the true state of the system, g represents control variables and w is a zero-
mean white noise process with spectral density Q (obtained from a Wiener process
w). A measurement of the true state at discrete times is made according to

s = h(ay, g, t) + v, (B2)

where v, is observation noise with covariance R;.

The state of the Kalman filter is represented by two variables, namely the estimated
state @ and the error covariance matrix P, which is a measure of the estimated
accuracy of the state estimate. The Kalman filter has the following two distinct phases.

Prediction (time update). In this phase no measurement is available. The estimated
state from the previous time #;,_; is used to produce an estimation of the current state
at time #;, here by a simple Euler step:

ap =1 + fa1, g1, 1) At. (B3)
The covariance of the estimation error changes according to
Pi=Pi+ (Fioi Poi + P FL 4+ Q) At (B4)

Here, F is the Jacobian of the dynamical system evaluated with the current state
estimate
pe
da a8k

Update (measurement update). In this phase, current measurement information is
used to refine the prediction. In the following, all states are marked by superscript
(—) before and by (+) after the measurement update. The estimated state is corrected
based on the innovation or measurement residual

ASy = s, — h(a, , g, 1) (B6)

(B3)

and the optimal Kalman gain

_ _ —1
Ki=P  H! (H Pf Hl +R) (B7)
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where H; is the Jacobian of the output equation evaluated with the predicted state
oh

H, = 22l (B8)
a8k
The updated state estimate is
al =a; + Ky ASy, (B9)
while the updated estimate of the covariance matrix is
Pl = (I — Ky Hy) P (B 10)

QO and R, have an intuitively clear meaning for a one-dimensional system. When Ry is
large, the filter does not trust in the measurement. The computed Kalman gain (B 7) is
small and thus the filter prefers the state estimate already in the model (B 9). Vanishing
R; indicates an ideal sensor and the Kalman gain is 1/H,. After the measurement
update the covariance of the estimation error is exactly zero (B 10). When Q is large,
the filter expects a lot of process noise. The covariance of the estimation error grows
rapidly with each time update (B4). In the measurement update, the filter prefers
information from the measurement over the predicted state.

In our application, pressure fluctuations at the base of the D-shaped body are
approximated by a sine function c,(t)=s=cy + ¢;sinf. We assume a dynamical
model with the four states frequency w, amplitude c¢;, phase 6 and offset ¢y, which
are combined in a state-space vector

Pressure fluctuations are then described by the output equation
sk =h(ay)=ayrsinaz; + asy.

A simple stochastic state-space model for the temporal evolution is provided by

1 00O
At 0 1 0
a,= 0 1 0 0 a1+ Wy_g.
0 0 0 1
N ——
F

This means that frequency, amplitude and offset are considered nominally constant,
while the phase grows with time according to the current frequency. A fair
approximation of Q is obtained when the estimated variances of the states divided
by T are placed along the diagonal. Here, T is the expected time scale on which the
variances of the states appear. The same procedure is applied to the matrix R, with
the variance of the measurement noise over 7. Thus, covariance matrices of process
and measurement noise are supposed to be

20000 0 O
oo | 0 000 01 s g gsuio
0o 0 0 1
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Reyn  Actuation Position Lu.ue.n Luctie_y LUclery LUclein
y [deg]  [deg]  [deg]  [deg]
23000 natural flow +0.7 =05 0.1 0.3 —1.3
—0.7 2.1 1.5 2.1 2.0
open-loop +0.7  —=0.7 0.0 0.6 2.5
Sty=0.15¢,=0.015 —0.7 —0.5 1.1 —0.2 0.5
phase control +0.7 —-0.9 0.7 —0.1 0.2
¢, =0.009 —0.7 0.2 —0.7 —2.6 0.3
35000 natural flow +0.7 —0.3 0.0 0.0 0.5
—0.7 1.3 1.6 1.3 1.1
open-loop +0.7 0.8 —0.2 —0.2 2.8
Sty =0.15,¢,=0.013 —0.7 2.0 —0.1 0.0 —0.6
phase control +0.7 =20 —0.1 —0.1 —0.9
¢, =0.008 —0.7 1.3 0.4 0.4 0.0
46000 natural flow +0.7 0.3 0.6 —0.4 0.1
—0.7 0.5 —0.3 0.2 1.2
open-loop +0.7 =39 —0.5 —0.1 5.7
Sty=0.15,¢,=0.012 —-0.7 =35 0.4 —0.3 —5.7
phase control +0.7 0.0 0.8 0.7 —04
¢, =0.007 —0.7 0.0 —0.8 —0.5 —0.5
58000 natural flow +0.7 0.3 0.6 0.4 —0.7
—0.7 0.4 —0.5 —1.0 0.3
open-loop +0.7 6.9 0.0 0.4 2.3
Sty=0.15,¢,=0.010 —-0.7 27 —0.2 0.0 —4.9
phase control +0.7 —09 0.3 —0.4 —1.0
¢, =0.007 —0.7 0.5 22 0.5 1.5
70000 natural flow +0.7 0.0 1.8 0.2 —0.1
—-0.7 -02 0.6 04 —-1.0
open-loop +0.7 =73 —0.1 —02 —148
Sty =0.15,¢,=0.009 —0.7 3.8 —-0.2 —0.2 —7.4
phase control +0.7 0.9 0.7 —-23 0.7
¢, =0.006 —0.7 0.4 —04 0.3 —0.9

TaBLE 3. Spanwise phase delay of dominant velocity fluctuations. Hot-wire probes are mounted
in spanwise arrays at (x, y) = (1, £0.7). Phase angles are computed between fluctuations at z =0
(#.) and z= +1.15 (u.41), and z =+ 1.74 (u.42), respectively, using the Fourier decomposition

for the corresponding dominant frequency.

Initial filter states @y and P, are set to

21 x 0.23 40 0 0 O
&0 = 8(1) and Py = 8 (1) (2) 8 X 10_2.
—0.5 0 0 0 1

Appendix C. Additional data

In table 3 the phase differences as described in §3.3 are summarized for all

investigated Reynolds numbers.
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